SEMESTER V

Course Code: CHE5D01

Open Course 1: ENVIRONMENTAL CHEMISTRY

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

Course outcomes

At the end of the course, students will be able to:

CO 1: Recall the technical/scientific terms involved in pollution.

CO 2: Understand the causes and effects of air pollution.

CO 3: Understand the sources, types and effects of water pollution.

CO 4: Describe water quality parameters.

CO 5: Know soil, noise, thermal and radioactive pollutions and their effects.

CO 6: Study various pollution control measures.

CO 7: Understand the basics of green chemistry.

Module I: Introduction to Environment and Environmental pollution (4 hrs)

Environmental chemistry - introduction, Environmental segments – Lithosphere: components of soils, Hydrosphere: water resources, Biosphere, Atmosphere - regions of

atmosphere – Troposphere, stratosphere, mesosphere, thermosphere.

Environmental pollution – Concepts and definition – Pollutant, contaminant, receptor and sink – Classification of pollutants – Global, regional, local, persistent and non-persistent pollutants.

References

1. A. K. De, Environmental Chemistry, 7th Edn., New Age International, 2012.

2. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.

3. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt Ltd, 2010.

Module II: Air Pollution (8 hrs)

Tropospheric pollution – Gaseous air pollutants – Hydrocarbons, oxides of sulphur, nitrogen and carbon – Global warming, green house effect, acid rain – Particulates – Smog: London smog and photochemical smog – effects and control of photochemical smog – stratospheric pollution - depletion of ozone layer, chlorofluorocarbons - Automobile pollution. Control of air pollution – Alternate refrigerants – Bhopal Tragedy (a brief study). Air pollution in Indian cities (Delhi, Agra and Kanpur).

References

1. S. K. Banergy, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.

2. V. N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.

3. S. E. Manahan, *Environmental Chemistry*, 8th Edn., CRC Press, Florida, 2004.

4. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.

5. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt. Ltd., 2010.

Module III: Water Pollution (10 hrs)

Impurities in water – cause of pollution – natural and anthropogenic – Marine water pollution – Underground water pollution.

Source of water pollution – Industrial waste, Municipal waste, Agricultural waste, Radioactive waste, Petroleum, Pharmaceutical, heavy metal, pesticides, soaps and

detergents.

Types of water pollutants: Biological agents, physical agents and chemical agents – Eutrophication - biomagnification and bioaccumulation.

Water quality parameters: DO, BOD, COD, alkalianity, hardness, chloride, fluoride and nitrate. Toxic metals in water and their effects: Cadmium, lead and mercury – Minamata disaster (a brief study), itai-itai disease, oil pollution in water. International standards for drinking water.

References

1. S. K. Banergy, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.

2. J. M. H. Selendy, *Water and Sanitation-Related Diseases and the Changing Environment*, John Wiley & Sons, 2011.

3. P. K. Goel, *Water Pollution: Causes, Effects and Control*, New Age International, 2006.
4. V. N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.

5. S. E. Manahan, Environmental Chemistry, 8th Edn., CRC Press, Florida, 2004.

6. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.

7. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt. Ltd., 2010.

Module IV: Soil, Noise, Thermal, light and Radioactive Pollutions (8 hrs)

Soil pollution: Sources by industrial and urban wastes. Pollution due to plastics, pesticides, biomedical waste and *e-waste* (source, effects and control measures) – Control of soil pollution -Solid waste Management – Open dumping, landfilling, incineration, re-use, reclamation, recycle, composting. Non-degradable, degradable and biodegradable wastes. Hazardous waste. Noise Pollution – physiological response to noise, Noise categories - effect of noise – biological effects. Thermal pollution – definition, sources, harmful effects and prevention. Light pollution. Radioactive pollution (source, effects and control measures) – Hiroshima, Nagasaki and Chernobyl accidents (brief study). Endosulfan disaster in Kerala (brief study).

References

1. S. E. Manahan, Environmental Chemistry, 8th Edn., CRC Press, Florida, 2004.

- 2. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.
- 3. A. K. De, Environmental Chemistry, 6th Edn., New Age International.
- 4. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt. Ltd., 2010.
- 5. Anindita Basak, Environmental Studies, Pearson Education India, 2009.

6. Pallavi Saxena, Vaishali Naik, *Air Pollution: Sources, Impacts and Controls*, CAB International, 2018.

Module V: Pollution Control Measures (12 hrs)

Air pollution control measures – Gravitational settling chamber, fabric filter, wet scrubber, catalytic converters, stacks and chimneys, cyclone collectors, Cottrell electrostatic precipitator, extraction ventilator, zoning and green belt.

References

1. N. P Cheremisinoff, Handbook of Air Pollution Prevention and Control, 2002.

- 2. M. Senapati, Advanced Engineering Chemistry, 2006.
- 3. K. C. Schifftner, Air Pollution Control Equipment Selection Guide, CRC Press, 2013.

4. K. B. Schnelle, C. A. Brown, *Air Pollution Control Technology Handbook*, CRC Press, 2016.

Module VI: Green Chemistry (6 hrs)

Introduction- Definition of green Chemistry, need of green chemistry, basic principles of green chemistry. Applications of green chemistry in daily life.

References

1. V.K. Ahluwalia, M. Kidwai, *New Trends in Green Chemistry*, Springer Science & Business Media, 2012.

- 2. M. Lancaster, Green Chemistry: An Introductory Text, Royal Society of Chemistry, 2010.
- 3. S. C. Ameta, R. Ameta, Green Chemistry: Fundamentals and Applications, CRC Press,